Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cells ; 11(12)2022 06 07.
Article in English | MEDLINE | ID: covidwho-1884015

ABSTRACT

People with pre-existing lung diseases such as chronic obstructive pulmonary disease (COPD) are more likely to get very sick from SARS-CoV-2 disease 2019 (COVID-19). Still, an interrogation of the immune response to COVID-19 infection, spatially throughout the lung structure, is lacking in patients with COPD. For this study, we characterized the immune microenvironment of the lung parenchyma, airways, and vessels of never- and ever-smokers with or without COPD, all of whom died of COVID-19, using spatial transcriptomic and proteomic profiling. The parenchyma, airways, and vessels of COPD patients, compared to control lungs had (1) significant enrichment for lung-resident CD45RO+ memory CD4+ T cells; (2) downregulation of genes associated with T cell antigen priming and memory T cell differentiation; and (3) higher expression of proteins associated with SARS-CoV-2 entry and primary receptor ubiquitously across the ROIs and in particular the lung parenchyma, despite similar SARS-CoV-2 structural gene expression levels. In conclusion, the lung parenchyma, airways, and vessels of COPD patients have increased T-lymphocytes with a blunted memory CD4 T cell response and a more invasive SARS-CoV-2 infection pattern and may underlie the higher death toll observed with COVID-19.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Lung/metabolism , Proteomics , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2
2.
Front Med (Lausanne) ; 7: 627278, 2020.
Article in English | MEDLINE | ID: covidwho-1063335

ABSTRACT

The newly identified severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) causes several heterogeneous clinical conditions collectively known as Coronavirus disease-19 (COVID-19). Older patients with significant cardiovascular conditions and chronic obstructive pulmonary disease (COPD) are predisposed to a more severe disease complicated with acute respiratory distress syndrome (ARDS), which is associated with high morbidity and mortality. COPD is associated with increased susceptibility to respiratory infections, and viruses are among the top causes of acute exacerbations of COPD (AECOPD). Thus, COVID-19 could represent the ultimate cause of AECOPD. This review will examine the pathobiological processes underlying SARS-CoV-2 infection, including the effects of cigarette smoke and COPD on the immune system and vascular endothelium, and the known effects of cigarette smoke on the onset and progression of COVID-19. We will also review the epidemiological data on COVID-19 prevalence and outcome in patients with COPD and analyze the pathobiological and clinical features of SARS-CoV-2 infection in the context of other known viral causes of AECOPD. Overall, SARS-CoV-2 shares common pathobiological and clinical features with other viral agents responsible for increased morbidity, thus representing a novel cause of AECOPD with the potential for a more long-term adverse impact. Longitudinal studies aimed at COPD patients surviving COVID-19 are needed to identify therapeutic targets for SARS-CoV2 and prevent the disease's burden in this vulnerable population.

3.
Front Cardiovasc Med ; 7: 585866, 2020.
Article in English | MEDLINE | ID: covidwho-914408

ABSTRACT

Background: Italy has one of the world's oldest populations, and suffered one the highest death tolls from Coronavirus disease 2019 (COVID-19) worldwide. Older people with cardiovascular diseases (CVDs), and in particular hypertension, are at higher risk of hospitalization and death for COVID-19. Whether hypertension medications may increase the risk for death in older COVID 19 inpatients at the highest risk for the disease is currently unknown. Methods: Data from 5,625 COVID-19 inpatients were manually extracted from medical charts from 61 hospitals across Italy. From the initial 5,625 patients, 3,179 were included in the study as they were either discharged or deceased at the time of the data analysis. Primary outcome was inpatient death or recovery. Mixed effects logistic regression models were adjusted for sex, age, and number of comorbidities, with a random effect for site. Results: A large proportion of participating inpatients were ≥65 years old (58%), male (68%), non-smokers (93%) with comorbidities (66%). Each additional comorbidity increased the risk of death by 35% [adjOR = 1.35 (1.2, 1.5) p < 0.001]. Use of ACE inhibitors, ARBs, beta-blockers or Ca-antagonists was not associated with significantly increased risk of death. There was a marginal negative association between ARB use and death, and a marginal positive association between diuretic use and death. Conclusions: This Italian nationwide observational study of COVID-19 inpatients, the majority of which ≥65 years old, indicates that there is a linear direct relationship between the number of comorbidities and the risk of death. Among CVDs, hypertension and pre-existing cardiomyopathy were significantly associated with risk of death. The use of hypertension medications reported to be safe in younger cohorts, do not contribute significantly to increased COVID-19 related deaths in an older population that suffered one of the highest death tolls worldwide.

4.
Am J Respir Crit Care Med ; 202(3): 471-472, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-596699
SELECTION OF CITATIONS
SEARCH DETAIL